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Highlights 10 

• Adaptative calibration as a function of the simulation progression 11 
• Calibration depends only on the training image 12 
• Robust parameterization based on a rapid prior analysis of the training image 13 

Abstract. Multiple‐point geostatistics are widely used to simulate complex spatial structures based on a training 14 

image. The use of these methods relies on the possibility of finding optimal training images and parametrization 15 

of the simulation algorithms. While methods for selecting training images are available, parametrization can be 16 

cumbersome. Here, we propose finding an optimal set of parameters using only the training image as input. The 17 

difference between this and previous work that used parametrization optimization is that it does not require the 18 

definition of an objective function. It is based on the analysis of the errors that occur when filling artificially 19 

constructed patterns that have been borrowed from the training image. The main advantage of our approach is to 20 

remove the risk of overfitting an objective function, which may result in underestimating the variance or in a 21 

verbatim copy of the training image. Since it is not based on optimization, our approach finds a set of acceptable 22 

parameters in a predictable manner by using the knowledge and understanding of how the algorithms work. The 23 

technique is explored in the context of the recently developed QuickSampling algorithm, but it can be easily 24 

adapted to other pixel-based multiple-point statistics algorithms using pattern matching, such as Direct Sampling 25 

or Single Normal Equation Simulation (SNESIM). 26 

 27 

1 Introduction 28 

Geostatistics is extensively used in natural sciences to map spatial variables such as surface properties (e.g., soils, 29 

geomorphology, meteorology) and subsurface geological features. Its main applications involve the estimation 30 

and simulation of natural phenomena. In this paper, we focus on simulation approaches. 31 

Traditional two-point geostatistical simulations preserve the histogram and variogram inferred from point data 32 

(Matheron, 1973). However, inherent limitations make the reproduction of complex structures difficult. Multiple-33 

point statistics (MPS), by accounting for more complex relations, enables the reproduction of such complex 34 

structures (Guardiano and Srivastava, 1993). However, MPS has its own limitations (Mariethoz and Caers, 2014). 35 

To perform satisfactorily, MPS algorithms require analog images (called training images) and appropriate 36 
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parametrization. Training images can often be provided by expert knowledge. Indeed, the training image is related 37 

to the property that is being simulated, and therefore it is common to all MPS algorithms. In addition, several 38 

methods have been proposed to automatically select an appropriate training image among a set of candidates (Pérez 39 

et al., 2014; Abdollahifard et al., 2019) . However, the parametrization of an MPS algorithm depends not only on 40 

the chosen training image but also on the specifics of the algorithm. This makes the task of finding good 41 

parametrization cumbersome, and therefore, users often have to resort to a trial-and-error approaches (Meerschman 42 

et al., 2013). 43 

Over the last few years, several studies have addressed the challenge of finding good MPS parameters. These can 44 

be categorized into two different philosophies. The first approach is focused on the “simulation grid”, which 45 

assumes that a parametrization is related to the simulation grid, the training image and the MPS algorithm. 46 

Dagasan et al. (2018) proposed using the known hard data from the simulation grid as a reference to compute 47 

statistical metrics and then trying to improve the parametrization through a simulated annealing optimization 48 

process until the metrics matched as closely as possible. The second approach is focused on the “training image” 49 

and assumes that the parametrization is only related to the training image and MPS algorithm. Along these lines, 50 

Baninajar et al. (2019) proposed the MPS Automatic Parameter Optimizer (MPS-APO) method based on the cross-51 

validation of the training image (TI) to quantify simulation quality and CPU cost. In this approach, artificially 52 

generated gaps in the high gradient areas of the training image are created, and MPS algorithms are used to 53 

simulate the gaps. The performance of a particular parameterization is quantified by assessing the correspondence 54 

between the filled and original training data. By design, this approach is extremely interesting for gap-filling 55 

problems. The authors state that it can be used for the parametrization of unconditional simulations; however, the 56 

use of limited gaps cannot guarantee the reproduction of long-range dependencies. Furthermore, due to the design 57 

of the framework for generating gaps, each MPS algorithm needs to be able to handle gap-filling problems for the 58 

error to be estimated properly. 59 

If both approaches show good results, then they are both related to optimization methods, and therefore, the user 60 

has no control over the duration of the optimization process. Furthermore, an objective function is needed. Finding 61 

this objective function is a challenge in itself because it can change depending on the training image used. Using 62 

optimization approaches, many metrics can be accounted for in the objective function, such as histogram, 63 

variogram, pattern histogram, connectivity function, Euler characteristic, etc., (Boisvert et al., 2010; Renard and 64 

Allard, 2013; Tan et al., 2013) or a weighted combination of these. Similarly, one has to define the meta-65 

parameters linked to the optimization algorithm itself, such as the cooling rate in simulated annealing or 66 

maximum number of iterations. As a result, MPS parameter optimization approaches tend to be complex and 67 

difficult to use. 68 

In this contribution, we propose skipping the complexity of an optimization algorithm and instead simplifying the 69 

optimization procedure to a key element: the simulation of a single pixel. The underlying principle of our approach 70 

is that a sequence of well-simulated pixels converges to a good simulation overall. Therefore, the goal is to find 71 

the optimal parameters to simplify the simulation of a single pixel using the training image as the only reference. 72 

Baninajar et al. (2019) showed that computing the prediction error (i.e., the error between the simulation and the 73 

reference) is an appropriate metric to find optimal parameters. Following this approach, we propose exhaustively 74 

exploring the parameter space by performing pixel predictions over patterns extracted from the training image, 75 
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and compute the associated prediction error. This results in a prediction error map for each combination of 76 

parameters. 77 

The remainder of this paper is structured as follows: Section 2 presents the proposed method. Section 3 evaluates 78 

the approach in terms of quantitative and qualitative metrics. Section 4 discusses the strengths and weaknesses of 79 

the proposed approach and presents the conclusions of this work. 80 

2 Challenges related to inappropriate parameters 81 

The hypothesis behind multiple point simulation is that the neighborhood of a given pixel x (the pattern generated 82 

by known or previously simulated pixels) is informative enough to constrain the probability density function of 83 

the value Z(x). Therefore, it requires a training image with enough repetition of the pattern (large enough) to allow 84 

the computation of such a conditional probability distribution. The Extended Normal Equation Simulation 85 

(ENESIM) (Guardiano and Srivastava, 1993) algorithm computes this distribution for the simulation of each pixel, 86 

therefore ensuring such a property. To provide a similar guarantee, the SNESIM (Strebelle, 2002) algorithm and 87 

the Improved Multiple-Point Parallel Algorithm using a List Approach (IMAPLA) (Straubhaar et al., 2011), 88 

include a parameter to define a minimum number of replicates. Direct Sampling (DS) (Mariethoz et al., 2010) 89 

adopts a different strategy by allowing for the interrupted exploration of the training image. It includes a distance 90 

threshold parameter that defines what is an acceptable match for a neighborhood; however, too small a threshold 91 

typically results in a verbatim copy of the training image. 92 

To reduce this issue, a maximal fraction of the explored training image is introduced, which is also called the 93 

exploration ratio. Since QuickSampling (QS) (Gravey and Mariethoz, 2020) also suffers from the verbatim copy 94 

issue with the use of the number of candidates being k=1, the authors allow and recommend the use of k>1, as k 95 

is similar to the number of replicates in SNESIM or IMPALA. A value k=1.5 in QS can be visualized as SNESIM 96 

with a minimum number of replicates of 1 for 50% of the time and 2 for the remaining 50% of the time. 97 

The phenomenon of verbatim copy is the complete pasting of a section from the training image to the simulation 98 

(an unintentionally similar process as that in patch-based approaches (Rezaee et al., 2013)). This means that the 99 

relative position of the simulated pixels is the same as that in the training image. This occurs when the 100 

neighborhood constraints on the simulated pixels are too strong and only the exact same patterns as those in the 101 

training image are acceptable. To detect this issue, a common strategy is to create a position map (similar to the 102 

index map), which represents the provenance of simulated values by mapping their original coordinates in the 103 

training image, as shown in Figure 1. 104 

Verbatim copy can appear in many forms; Figure 1 shows the most common ones. The pure verbatim (the most 105 

common type of verbatim copy) is a simple copy of the image, with all pixels in the same order inside of the 106 

patches. Block verbatim typically appears when there are many replicates of a very specific type of pattern in the 107 

training image and few replicates of all other patterns. Therefore, the MPS algorithm is forced to switch at the 108 

position of this common pattern. Structural verbatim is an example of pure verbatim over the white pixels. 109 

Structural verbatim tends to appear when large-scale structures are unique in the training image, which often 110 

allows a visually satisfying image to be quickly obtained. Often, users are ready to sacrifice verbatim on large-111 

scale structures, but this can easily introduce bias, which is one of the hardest types of verbatim to detect. This can 112 

typically occur when the maximum neighborhood radius is too large. We then perfectly duplicate the large and 113 
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initial structure. Finally, no verbatim, which is the expected result of simulations, is when the position pixel does 114 

not have any particular relations (their position is unpredictable). 115 

116 
Figure 1 Visualization of verbatim copies using a position map. This is an extreme case that highlights that verbatim is 117 
not defined by the value simulated but by the source of the value. 118 

3 Method 119 

The objective of the presented approach is to find an optimal set of parameters using only the training image and 120 

knowledge of the mechanics of the simulation algorithm as information. The simulation algorithm is not used in 121 

this context; in fact, simulations are not required to obtain a proper calibration. The main target application of the 122 

presented approach is the pattern matching simulation algorithm QuickSampling (QS), where the values, at a pixel 123 

scale, are directly sampled from the training image. The method is suitable for the simulation of continuous and/or 124 

categorical variables. Binary variables are a particular case of continuous and categorical variables. 125 

Simulation algorithms, such as QS, can be summarized by Algorithm 1. The key operation occurs at Line 3, which 126 

is when the algorithm searches for an optimal match based on the neighboring conditioning data. 127 
Algorithm 1 The QS algorithm 128 

 129 
Inputs: 130 
!: training images 131 
": simulation grid, including the conditioning data 132 
#: simulation path 133 
$: parametrization (including n: number of neighbors) 134 
 135 

1. For each unsimulated pixel % following the path #: 136 
2. Find the neighborhood &(%) in " composed of the n($) closest neighbors 137 
3. Find a candidate in ! those matches &(%) using$ 138 
4. Assign the value ) of the selected candidate to % in " 139 
5. End 140 

 141 

Here, we propose applying a divide and conquer approach by dividing any pixel-based sequential simulation into 142 

its atomic operation: the simulation of a single pixel. We assume that if all pixels are perfectly simulated, then the 143 
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resulting simulation should also be good. A perfectly simulated pixel is a pixel that respects the conditional 144 

probability distribution. 145 

Considering the simulation of a pixel, many values can potentially be valid. 146 
|{)|#()|&(%)) > 0}| ≥ 1 (1) 147 

where |	. | represents the cardinality of a set. #3)4&(%)5 denotes the probability of ) (a given value) knowing 148 

&(%), the neighborhood. Each possibility will still respect the probability distribution. 149 

The proposed approach consists of finding a set of parameters that results in accurate samples for each pattern. An 150 

extreme and undesired situation occurs from the simulation of a value that came from the sampling of perfect 151 

matches (the neighborhood is available in the training image), which results in a simulation identical to the training 152 

image and therefore constitutes verbatim copy. 153 

The search for the optimal parametrization is carried out by exhaustive exploration (Algorithm 2). The prediction 154 

error is computed, which is the difference between the original value of the pattern and the value of the selected 155 

training image pattern (Figure 2). 156 

 157 
Figure 2 All steps for a single pattern, summarizing Algorithm 2, Lines 2-4. 158 

The proposed algorithm explores a discretized parameter space $ (Algorithm 2, Line 1). While this discretization 159 

is natural for some parameters, such as 6, which is an integer, it can require an explicit discretization for other 160 

parameters, such as the kernel in QS (or potentially the 7ℎ in DS). Furthermore, a key component of our method 161 

is the exploration of the parameter space for several representative stages 9 of the simulation (Algorithm 2, Line 162 

1). In the case of a random path, the progression of a simulation is directly related to the density of the 163 

neighborhoods, therefore 9 represents the density of a neighborhood. For each combination 9	and $, multiple 164 

measures over a set of random locations : (500 < |:| < 10000) occur at Lines 1-5 in Algorithm 2 and their 165 

mathematical expression is shown in Equation 2, 166 
Algorithm 2 167 

Training image 

Prediction error 

Extracted pattern 

Decimated pattern 

Mismatch map 
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Inputs: 168 
List of 9, and list of $ 169 
! the training image 170 

1. For each possible combination of 9	and $ do for all = ∈ : (: is randomly generated): 171 
2. Sample a neighborhood &(=) from ! respecting 9 172 
3. Using $, find a candidate in ! that matches &(=), excluding for = itself 173 
4. Compute the error @ between the selected candidate andA(=) 174 
5. End 175 
6. Analyze the errors @ to determine the best $ for each 9. 176 

@($, 9, !) = C
1
|:|

DEZ(=) − ZHCand!\{$}
3$, &(=,9)5MN

&

$∈(
(2) 177 

 178 

where Cand($,&) returns a single candidate position for a given neighborhood & and follows the parametrization 179 

$. &(=,9) denotes a decimated neighborhood around = that respects the condition	9. : represents a random set 180 

of positions in the training image, and A(=)	refers to the actual value at position = ∈ : in the training image. 181 

Finally, for each stage considered, the set of parameters with the minimum associated error @ is considered optimal 182 

(in Algorithm 2, Line 6). 183 

@3$)*+,-./ , 9, !5 = min
0
@($, 9, !) (3) 184 

To avoid over-constrained situations from generating a verbatim copy of the training image, the position = and its 185 

direct neighbors (in a small radius, usually around 5 pixels, but can we increase depending of the small scale 186 

structure of the training image) are removed from the set of potential candidates. Furthermore, in the case of 187 

equality between several optimal options, we propose the simple rules of taking the cheapest parameter set in terms 188 

of computational cost (e.g., the smallest 6). 189 

3.1 An efficient implementation 190 

In practice, the implementation of Algorithm 2 divides $ into two subsets of parameters: $1 and $2. $1 contains 191 

all the parameters that affect the computation of the match of a single pattern. This is dependent on the algorithm; 192 

in the case of QS, these are the number of neighbors 6, and the kernel (in DS, it would be 7ℎ, the threshold, and 193 

6). $2 includes the parameters related to the sampling process of the training image. In the case of QS, these are 194 

the number of matches to retain S, the number of candidates (and in the case of DS, T, which is the fraction of the 195 

training image that is scanned). Interestingly, we can precompute and store of all matches for a given 196 

parameterization $1. Then, the saved matches of $1 can be used to quickly measure all possibilities for the 197 

parameters in $ = $1 + $2. This two-step approach allows to significantly reduce redundant computations. It is 198 

possible to further accelerate this algorithm by aborting the estimation of @ if the error remains high after having 199 

tested only a small number (at least 500) of samples from :. To carry out this last operation efficiently, the 200 

algorithm increases : for the parameter combinations of interest. At each increase step, it checks if more 201 

computations are needed. The following rules proved a good trade-off: 202 
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@($, 9, !) −
1
2
V($, 9, !) > @($-,3, 9, !) +

1
2
V($-,3, 9, !)

@($-,3, 9, !) = min
0
@($, 9, !)

V($, 9, !) = C
1
|:|

DWEZ(=) − ZHCand
!\{$}

3$, &(=,9)5MN − @($, 9, !)X

&

$∈(
(4)

 203 

With @(. ) the error, and V(. ) the standard deviation. Therefore, a given parametrization is only further explored if 204 

the error is a range of a V.  205 

4 Result 206 

All experimental tests in this section are performed using the training image shown in Figure 2. The stages 9 are 207 

distributed following a logarithmic scale. Experimentation shows that the nodes simulated in the initial stages of 208 

the path are critical for the overall simulation 209 

4.1 Automatic calibration for QS 210 

In the case of QS, the method finds optimal values for S the number of candidates, 6 the number of neighbors and 211 

Z the kernel. 212 

4.1.1 Automatic calibration for QS with a uniform kernel 213 

In this first test, we use the configuration $1 = {6} and $2 = {S}. The results are shown in Figure 3. It shows the 214 

optimal number of candidates k and number of neighbors as a function of the simulation progress (equivalent to 215 

the neighborhood density 9). The ignorance threshold is defined by computing the average error between elements 216 

of the marginal distribution. It represents the error value beyond which no information is extracted from the 217 

neighborhood, stage where the simulated value can then be drawn from the marginal distribution without 218 

introducing bias. 219 
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 220 
Figure 3 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, 221 
with the associated prediction error (in black). The red line represents the ignorance threshold. The dashed blue line 222 
indicates the average density for the neighborhood considered. 223 

The optimal k remains small throughout the simulation because the training image is not sufficiently repetitive 224 

(large). At early stages of the simulation, it seems important to use many neighbors. The number of neighbors 225 

increases until approximately 3% of the simulation, followed by a subsequent drastic reduction. This tends to 226 

indicate that once the large structures are informed, only the few direct neighbors are important. We also note that 227 

even if the parametrization is logical, it is generally difficult to predict. This indicates that the use of a single 228 

parametrization for the entire MPS simulation is generally suboptimal. Figure 3 also shows that the first few 229 

simulated pixels are hardly predictable (close to the ignorance threshold). 230 

 231 
Figure 4 Error as a function of the number of neighbors, with k=1, 232 
 where each curve represents the associated density of the neighborhood D (which is equivalent to the fraction of the 233 
simulation path). 234 

Figure 4 shows the evolution of @ as a function of the number of neighbors in the simulation stage. This indicates 235 

that two regimes exist in the simulation. In the first percentages of the simulation, an optimal prediction can be 236 
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obtained even with a small number of neighbors. However, as the neighborhoods become denser, the importance 237 

of spatial continuity takes over. This two-step process is expected, as random large-scale features are generated 238 

first; then, in a second step, the MPS algorithm fills the image with a consistent fine-scale structures. Furthermore, 239 

it shows that using a large number of neighbors at the end of the simulation generates suboptimal results, which 240 

could explain the small-scale noise that is sometimes visible in some MPS simulations. 241 

 242 

4.1.2 Automatic calibration of QS considering different kernels 243 

Here, we use the following configuration $1 = {6, Z} and $2 = {S}. We consider kernels as having a radial 244 

exponential shape, [, = \45.7!. 245 

 246 
Figure 5 Optimal parameters for QS (k in green, number of neighbors in blue, and best kernel in magenta) as a function 247 
of the progression, with the associated prediction error (in black). The dashed blue line indicates the average density 248 
for the neighborhood considered. 249 

Figure 5 shows the evolution of the QS parameters, where interferences between the number of neighbors and 250 

skewed kernels (high ]) are visible. This interaction can be explained by the fact that the last neighbors will receive 251 

negligible weights with large ] values, and thus 6 becomes insensitive. In that case, the differences between 252 

possible configurations are negligible, with random noise in the metric. As expressed in the methodology section, 253 

in cases of a similar error, the cheapest solution is considered. In the case of QS, having a large number of 254 

neighbors can marginally increase the computational time; therefore, we introduce a small tolerance that results in 255 

favoring small 6 values. This tolerance is introduced as a small extra cost for each extra neighbor, for example 256 

adding 5e-5 for each extra neighbor. When the gain during simulations was limited, up to a 10% computational 257 

gain was observed using Equation 4. 258 

 259 
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 260 
Figure 6 Optimal parameters for QS (k in green and number of neighbors in blue, and the best kernel in magenta) 261 
as a function of the progression, with the associated prediction error (in black). The dashed blue line is the average 262 
density for the neighborhood considered. 263 

Figure 6 shows similar quality (@ curves) as Figure 5. However, the number of neighbors required during the 264 

simulation drastically decreases as advanced simulation stages, and the wild oscillations are avoided. 265 

4.2 Sequential simulation using automatic calibration 266 

 267 
Figure 7 Simulation using QS with parameters generated by the automatic calibration. 268 

Figure 7 shows qualitative results using the evolutive parametrization resulting of the proposed autocalibration. 269 

QS with kernel refers to the use of different values of alpha for the kernel. In this case, the results are similar to 270 

state-of-the-art simulations using a manual calibration. Tests using QS with a uniform kernel fail to reproduce 271 
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some structures; in particular, the size of the objects is incorrect. Each verbatim map shows few homogenous areas; 272 

therefore, realizations are produced with a low rate of verbatim copy. 273 

From a quantitative point of view, Figure 8 illustrates different metrics across a set of 100 simulations. The 274 

automatic calibration method proposed here allows for obtaining better quality simulations than in the original QS 275 

article. 276 

Figure 9 shows that variogram and connectivity metrics are well reproduced, although they have not been directly 277 

constrained in the calibration process. Indeed, the parameter optimization only considers the simulation of single 278 

pixels and never computes global metrics over an entire grid. 279 

 280 
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 281 
Figure 8 Benchmark between QS with an adaptive kernel (Figure 6) and a uniform (without) kernel (Figure 3) over 100 282 
simulations for 5 different metrics. 283 

5 Discussion 284 

The proposed method allows for the automatic calibration of QS and potentially similar pixel-based MPS 285 

approaches, reaching a similar quality as that of manual parameterization from both quantitative and qualitative 286 
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points of view. The metrics confirm the good reproduction of training patterns because the method finds a 287 

calibration that avoids verbatim copy. 288 

The major advantage of our approach is the absence of a complex objective function, which often itself requires 289 

calibration. The method runs in a predictable maximum time, which depends of the number of patterns tested, that 290 

relate on the expected quality of the calibration V. The calibration can even be refined based on previous results, 291 

without running all the processes again, by adding steps, kernels, or by increasing |:|.  292 

Our approach cannot be used to determine an optimal simulation path because it focuses on the simulation of a 293 

single pixel. Furthermore, the method does not take into consideration the computational cost required for a 294 

simulation. 295 

The computation time of the optimal parameters depends on the expected quality. For example, sometimes a kernel 296 

provides only a small improvement but requires many computations. A full exploration of a 250x250 image takes 297 

approximately 30 min. However, a result using a degraded parameter space can provide close results in less than 298 

10 min. This degraded space can be constructed, for example, by subsampling the number of neighbors following 299 

a squared function or using some external/expert knowledge. 300 

The method was explored for multivariable images, resulting in a larger parametrization space than with a single 301 

variable. The method provides good results independent of the task. Unfortunately, when performing this 302 

approach, each new parameter increases the computation time. This can lead to impractical scenarios, especially 303 

in the case of 4 or more variables. 304 

In the context of testing the generality of the proposed approach, calibration was computed on multiple training 305 

images (found in the Appendix B, C). Unexpectedly, the calibration pattern with two regimes (6 large, then 6 306 

smaller) seems to be universal, at least for single variable simulations. While the position of the abrupt transition 307 

between each regime seems to vary greatly (between 0.5% and 20% of the path), the overall shape remains the 308 

same. Therefore, the approach proposed by Baninajar et al. (2019), in which long ranges are not considered, can 309 

be extended by using large 6 values in the early stages of the simulation. 310 

6 Conclusion 311 

The proposed approach allows for the automatic calibration of pixel-based MPS algorithms. Furthermore, it 312 

demonstrates that for optimal results, the parametrization cannot remain constant during the simulation and instead 313 

needs to evolve with the simulation progression. A visually appealing result of complex features without verbatim 314 

copy is difficult to simulate, especially when using a uniform kernel.  315 

The proposed method allows for the calibration of a parametric kernel. However, in future work one can envision 316 

the optimization of a nonparametric kernel where the weight of each individual neighbor [, is considered a 317 

variable to optimize using @ as an objective function (e.g., using machine learning frameworks). 318 

The study of the evolution of parameters shows a smooth behavior of the average error. Therefore, the use of a 319 

multivariate fitting approaches to estimate the error surface with fewer evaluations could be an interesting solution 320 

to speed up the parametrization by capitalizing on neighbors (in parameter space). The use of machine learning to 321 

take advantage of transfer learning between training images also has a high potential. These two solutions will 322 

allow for the interpolation between parameters such as ] of the kernel. 323 
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Appendix 378 

This supplementary material contains a similar calibration for other training images. 379 

A. Stone 380 

 381 
Figure  A.1 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, 382 
with the associated prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is 383 
the average density for the neighborhood considered. The dot-dashed line represents the variability in 1% of the error. 384 

B. Strebelle 385 

 386 
Figure  B.1 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, 387 
with the associated prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is 388 
the average density for the neighborhood considered. The dot-dashed line represents the variability in 1% of the error. 389 
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 390 
Figure  B.2 Optimal parameters for QS (k in green and number of neighbors in blue, and the best kernel in magenta) 391 
as a function of the progression, with the associated prediction error (in red). The dashed blue line is the average density 392 
for the neighborhood considered. 393 

 394 
Figure  B.3 Simulation using QS using parameters generated by the automatic calibration. 395 
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 396 
Figure  B.4 Benchmark between QS with adaptative kernel (Figure  B.2) and uniform (without) kernel (Figure  B.1) 397 
over 100 simulations for 5 different metrics. 398 

 399 
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C. Delta Lena 400 

 401 
Figure  C.1 Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, 402 
with the associated prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is 403 
the average density for the neighborhood considered. The dot-dashed line represents the variability in 1% of the error. 404 

 405 
Figure  C.2 Optimal parameters for QS (k in green and number of neighbors in blue, and the best kernel in magenta) 406 
as a function of the progression, with the associated prediction error (in red). The dashed blue line is the average density 407 
for the neighborhood considered. 408 
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 409 
Figure  C.3 Simulation using QS using parameters generated by the automatic calibration. 410 
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 411 
Figure  C.4 Benchmark between QS with adaptative kernel (Figure  C.2) and uniform (without) kernel (Figure  C.1) 412 
over 100 simulations for 5 different metrics. 413 

414 
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